

A 36 W CW AlGaN/GaN-Power HEMT Using Surface-Charge-Controlled Structure

T.Kikkawa¹, M.Nagahara², T.Kimura¹, S.Yokokawa², S.Kato², M.Yokoyama², Y.Tateno²,

K.Horino², K.Domen², Y.Yamaguchi², N.Hara¹, and K.Joshin¹

¹Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0197, Japan

²Fujitsu Quantum Devices, 1000 Kamisukiawara, Nakakoma-Gun, Yamanashi, 409-3883, Japan

Abstract — We describe high power 36 W CW operation at 30 V using AlGaN/GaN HEMTs on SiC. Surface-charge-controlled structure, consisting of n-type doped thin GaN cap layer on AlGaN/GaN HEMT structure, is used to obtain high gate-drain breakdown voltage and to reduce current collapse. By optimizing threshold voltage of this structure, we obtained a maximum drain current of 1A/mm and a gate-drain breakdown voltage over 200 V. A 24-mm-wide-gate chip showed output power of 45.6 dBm (36 W) at 2.2 GHz with a liner gain of 9.7 dB.

I. INTRODUCTION

AlGaN/GaN-based HEMTs are promising for microwave power applications, including L-band wireless base stations. There are many reports related to high output power density using a narrow gate device [1]. Pulsed measurements also exhibit high output power by suppressing heat generation [2]. Although continuous wave (CW) operation is required for high power application, a few papers reported total CW power over

30W using a wide gate chip [3]. This was because thermal problem occurred especially when a sapphire substrate was used. To solve a heat-sinking problem, a flip-chip or a SiC substrate has been considered. In this paper, we investigated GaN-HEMTs on SiC substrates and introduced the surface-charge-controlled structure [4], demonstrating a 36 W CW total output power.

To obtain higher RF-power and power added efficiency, we have to suppress frequency dependent characteristics, such as large transconductance (gm) dispersion, gate-lag and current collapse [5-7]. We controlled the polarization-induced surface charge by n-type doping in a thin GaN cap on AlGaN and stabilized n-GaN-surface between electrodes using strongly stressed SiN [4]. This structure exhibited high off-state and on-state breakdown voltages of 200 V and 70 V with a maximum drain current of 1 A/mm. Recently, AlGaN-thickness effect began to be discussed [8]. In this paper, we studied the effect of threshold voltage (V_{th}) on drain current, BV_{gd} and current collapse to obtain high output power with high

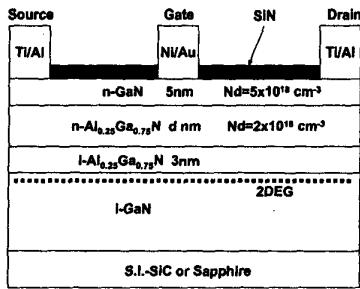


Fig.1. Schematic drawing of investigated surface-charge-controlled n-GaN-cap structures. Thin n-type GaN cap layer was grown on AlGaN/GaN conventional structure. Al mole fraction is 20-25%. SiN passivation was formed on GaN cap layer between electrodes. N-AlGaN thickness was varied to control V_{th} .

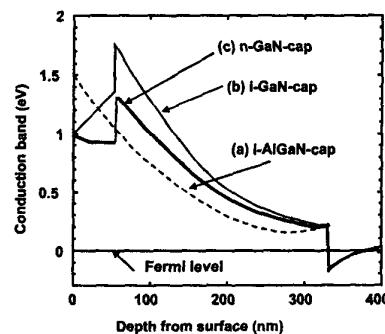


Fig. 2. Simulated band structure of (a) conventional AlGaN cap structure, (b) un-doped GaN cap structure and (c) novel surface-charge-controlled structure with thin n-GaN cap layer. N-GaN layer is 5 nm thick.

efficiency using surface-charge-controlled structure.

II. EXPERIMENTAL

Figure 1 shows the device structures investigated (using in-house MOVPE grown Ga-face material on SiC substrates). N-AlGaN thickness was varied to change V_{th} . Mesa etching is used for isolation. Source/drain and gate electrodes were Ti/Al and Ni/Au. A stepper is used for gate lithography. Typical gate length is 0.9 μm . A strongly stressed SiN was deposited on the n-GaN cap layer using plasma CVD after forming a gate electrode. Then, an air-bridged HEMT chip is fabricated. Gate width (W_g) was varied from 40 μm to 24 mm. After air-bridge fabrication, a 24-mm- W_g chip was wire-bonded into a package with capacitors to obtain good impedance match.

II. RESULTS AND DISCUSSION

A. Surface-Charge-Controlled Structure on Sapphire

Figure 2 shows typical band diagram of the surface-charge-controlled structure (the n-GaN cap layer on $\text{Al}_{0.20}\text{Ga}_{0.80}\text{N}/\text{GaN}$ HEMTs) compared with conventional structures. The surface-charge-controlled structure screens the polarization charges at GaN/AlGaN interface by 25% as shown in Fig.2 [4]. The conduction band in the near surface region is almost flat compared with the un-doped GaN cap case. Several researchers investigated un-doped thin GaN cap layers to decrease gate leakage by the effect of piezoelectric and spontaneous polarization at GaN/AlGaN interface [9]. Maximum drain current was, however, low compared with the conventional structures due to reduced channel charge. In addition, it is relatively difficult to obtain good ohmic contact for un-doped thin

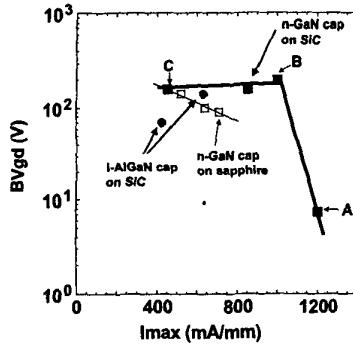


Fig. 4. BV_{gd} as a function of Imax . The effect of cap structures and substrates were investigated. Results of surface-charge-controlled N-GaN cap structures A, B, and C in Table I were also shown in this figure.

GaN cap layer. Here we suppress the surface charge effect on AlGaN and can obtain good ohmic contact with the n-type doped thin GaN cap layer.

Figure 3 shows off-state gate-drain breakdown voltage (BV_{gd-off}) as a function of maximum drain current (Imax) when sapphire substrates were used. Compared with a conventional AlGaN-cap structure, the surface-charge-controlled n-GaN-cap structure showed higher BV_{gd-off} of 140 V, defined as a V_{gd} at a gate current of 500 $\mu\text{A/mm}$. N-GaN cap also screened surface traps.

B. Surface-Charge-Controlled Structure on SiC

We compared three different thick n-AlGaN layers to control V_{th} as shown in Table I. We controlled V_{th} from -9 V to -2 V by changing AlGaN thickness. Structure A and B exhibited BV_{gd-off} of 160-200 V, When V_{th} became to -9 V (Structure A), however, BV_{gd-off} is less than 10 V. We introduced I_g measurement when V_{gd} is

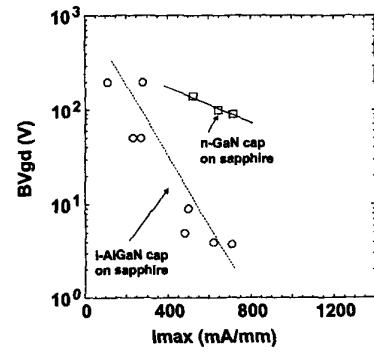


Fig. 3. Off-state breakdown voltage (BV_{gd-off}) as a function of maximum drain current (Imax) when sapphire substrates were used.

TABLE I
SUMMARY OF DC CHARACTERISTICS

Structure No.	A	B	C
V_{th} (V)	-9	-5.5	-2
Id_{ss} at $\text{V}_g=0$ V (mA/mm)	980	750	300
Imax at $\text{V}_g=2$ V (mA/mm)	1200	1000	450
G_m -max (mS/mm)	150	180	230
BV_{gd1} (V) at $\text{I}_{gd}=500$ $\mu\text{A/mm}$	7.5	>200	160-200
BV_{gd2} (V) at $\text{I}_{gd}=1$ mA/mm	50	>200	160-200
I_g -pinched-off ($\mu\text{A/mm}$) at $\text{V}_{gd}=V_{th}$	810	60	25
I_g ($\mu\text{A/mm}$) at $\text{V}_{gd}=-50$ V	1000	90	65

settled to V_{th} (Table1). Gate leak current at V_{gd} of V_{th} increased, when V_{th} became negative. This is attributed to larger leakage through Schottky barrier till the 2DEG channel becomes pinched off state. This indicates that there is a limit of V_{th} even if the surface-charge-controlled structure is used. I_{max} decreased at structure C, suggesting that structure C with V_{th} of -2 V is not sufficient for high power operation even if gm is large.

Figure 4 shows the dependence of BV_{gd-off} on maximum drain current. When n-GaN cap was used with SiC substrates, we could obtain high BV_{gd} with high drain current. BV_{gd} for SiC is larger compared with that of sapphire, suggesting that SiC is more promising to achieve high BV_{gd} .

C. DC and RF Characteristics ($W_g=40-80 \mu m$)

Figure 5 shows I-V characteristics measured by a 100 Hz curve-tracer. We compared the characteristics among different V_{th} of surface-charge-controlled structure. When V_{ds} was around 20 V, no current collapse was observed. When V_{ds} was around 50 V, however, current collapse occurred only for structure C (most positive V_{th}). Only structure B showed high I_{max} and high BV_{gd} without current collapse. This suggests that current collapse occurred when V_{th} became positive. Electron

depletion thickness from surface may play an important role of current collapse.

Figure 6 shows transconductance (gm) as a function of V_{gs} . DC- gm and RF- gm were compared to discuss gm dispersion. For structures A and B, DC- gm and RF- gm are almost same at the gm peak region, indicating that gm dispersion was suppressed by n-GaN cap layer. However, around V_g of 0 V, RF- gm is larger than DC- gm . This is mainly attributed to heat generation produced by high current density around 1A/mm. For structure C, DC- gm and RF- gm are the same at all V_{gs} . This is due to lower current density.

E. Power Characteristics ($W_g=24 mm$)

Figure 7 shows power characteristics at 2.2 GHz as a function of V_{ds} . Structure B and C were to estimate the effect of I_{max} and current collapse on power characteristics. We could operate 24-mm- W_g HEMTs at 30 V. CW total output power increased till 30V without grinding a 400- μm -thick SiC substrate. We obtained saturation power ($Psat$) of 36 W at 30 V for structure B. P_{1dB} was over 30 W at 30 V. $Psat$ for structure C is 2 dBm lower than structure B, which consistent to the difference of I_{max}

Figure 8 shows CW power measurement results at 30 V.

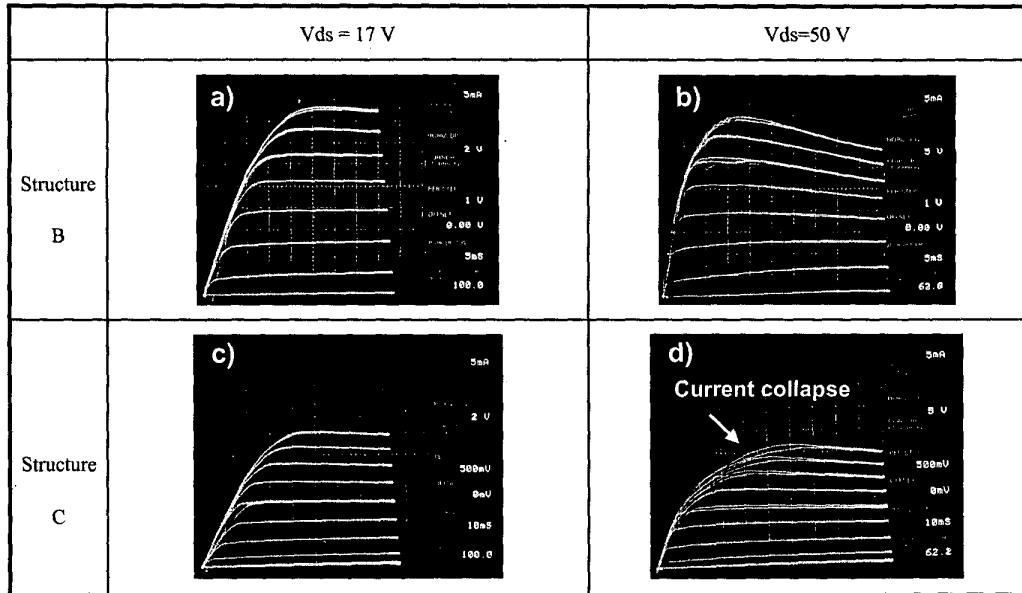


Fig. 5. Summary of Ids - V_{ds} characteristics of two different surface-charge-controlled structures B and C. A gate width is $40 \mu m$. Vertical division is 5 mA. Horizontal division is 2 V for (a) and (c), and 5 V for (b) and (d). A gate voltage was varied from $+2$ V to -5 V by 1 V step for (a) and (b), and from $+2$ V to -2 V by 0.5 V step for (c) and (d). For structure C, current collapse occurred at 50 V operation at positive V_g region as shown in (d).

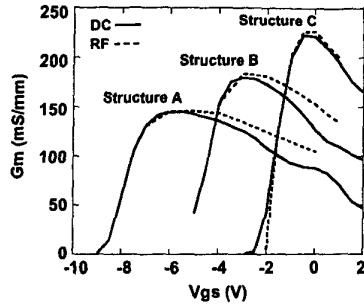


Fig. 6. Transconductance (g_m) as a function of V_{gs} for different structures shown in Table I. $W_g=80\ \mu\text{m}$. Solid lines show DC- g_m under DC measurement and dashed lines show RF- g_m by S-parameter measurement. RF- g_m is defined as an average g_m between 1 GHz and 3 GHz.

Linear gain of 9.7 dB with power added efficiency (PAE) of 29% was obtained for structure B. Structure C showed 10% lower PAE due to large current collapse. P_{out} for structure C was saturated at lower P_{in} compared structure B.

IV. CONCLUSION

In summary, we fabricated 24-mm-wide-gate AlGaN/GaN HEMTs using a surface-charge-controlled n-GaN-cap structure on SiC. We concluded that optimum V_{th} should be considered to obtain high BV_{gd} and to suppress current collapse. We demonstrate high voltage CW operation exhibiting high total output power of 36 W at 30 V. This high voltage operation with high current density was obtained only by optimizing V_{th} of surface-charge-controlled structure.

REFERENCES

- [1] Y-F Wu, D.Kpoplnek, J.P.Ibbetson, P.Parikh, B.P. Keller, and U.K.Mishra, "Very-High Power Density AlGaN/GaN HEMTs," *IEEE Trans. Electron. Devices*, Vol.48, pp586-590, March 2000.
- [2] Y.Ando, Y.Okamoto, H.Miyamoto, N.Hayama, T.Nakayama, K.kasahara, and M.Kuzuhara, " A 110-W AlGaN/GaN Heterojunction FET on Thinned Sapphire Substrates," *2001 IEDM Tech. Digest*, pp381-384, December 2001.
- [3] J.W.Palmour, S.T.Sheppard, R.P.Smith, S.T.Allen, W.L.Pribble, T.J.Smith, Z.Ring, J.J.Sumakeris, A.W.Saxler, and J.W.Miligan, "Wide Bandgap Semiconductor Devices and MMICs for RF Power Applications," *2001 IEDM Tech. Digest*, pp385-388, December 2001.
- [4] T.Kikkawa, N.Nagahara, N.Okamoto, Y.Tateno, Y.Yamaguchi, N.Hara, K.Joshin, and P.M.Asbeck, "Surface-Charge-Controlled AlGaN/GaN-Power HFET without Current Collapse and g_m Dispersion," *2001 IEDM Tech. Digest*, pp585-588, December 2001.
- [5] I.Daumiller, D.Theron, C.Caquiere, A.Vescan, R.Dietrich, A.Wieszt, H.Leier, "Current Instability in GaN-Based Devices," *IEEE Trans. Electron. Devices* vol.22, pp 62-64, Feb. 2001.
- [6] S.C.Binari, K.Ikossi, J.A.Roussos, W.Kruppa, D.Park, H.B.Dietrich, D.D.Koleske, A.E.Wickenden, and R.L.Henry, "Trapping Effects and Microwave Power Performance in AlGaN/GaN HEMTs," *IEEE Trans. Electron. Devices* Vol.48, pp465-471, March 2001.
- [7] R.Vetury, N.Q.Zhang, S.Keller, and U.K.Mishra, "The Impact of Surface States on the DC and RF Characterization of AlGaN/GaN HFETs," *IEEE Trans. Electron. Devices*. Vol.48, pp560-566, March 2001.
- [8] V.Tilak, B.Green, V.Kaper, H.Kim, T.Prunty, J.Smart, J.Shealy, and L. Eastman, "Influence of Barrier Thickness on High-Power Performance of AlGaN/GaN HEMTs," *IEEE Trans. Electron. Device Letters* vol.22, pp504-506, Nov. 2001.
- [9] X.Z.Dang, R.J.Welty, D.Qiao, P.M.Asbeck, S.S.Lau, E.T.Yu, K.S.Boutros, and J.M.Redwing, "Fabrication and Characterization of Enhanced Barrier AlGaN/GaN HEMT," *IEEE Electron. Lett.* Vol.35, pp602-603, April 1999.

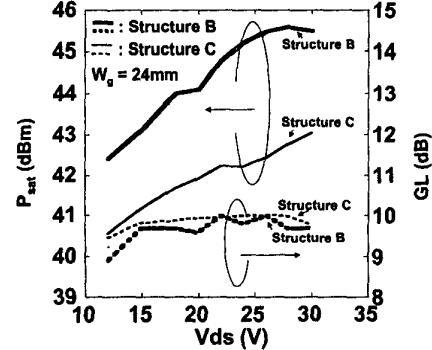


Fig. 7. CW power measurement results as a function of V_{ds} . Measured frequency is 2.2 GHz. Gate width is 24 mm. Packaged chip was measured.

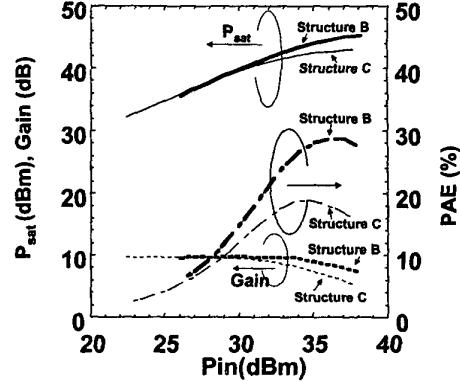


Fig. 8. CW power measurement results at 30 V as a function of P_{in} . Measured frequency is 2.2 GHz. Gate length is 0.9 μm . Gate width is 24 mm. Packaged chip was measured.

1818